1,680 research outputs found

    Tailoring correlations of the local density of states in disordered photonic materials

    Full text link
    We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be---to some extent---manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards a complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.Comment: 5+9 pages, 5+6 figures. Fixed confusion of references between the main text and the supplemental material in version

    Photon recycling in Fabry-Perot micro-cavities based on Si3_3N4_4 waveguides

    Full text link
    We present a numerical analysis and preliminary experimental results on one-dimensional Fabry-Perot micro-cavities in Si3_3N4_4 waveguides. The Fabry-Perot micro-cavities are formed by two distributed Bragg reflectors separated by a straight portion of waveguide. The Bragg reflectors are composed by a few air slits produced within the Si3_3N4_4 waveguides. In order to increase the quality factor of the micro-cavities, we have minimized, with a multiparametric optimization tool, the insertion loss of the reflectors by varying the length of their first periods (those facing the cavity). To explain the simulation results the coupling of the fundamental waveguide mode with radiative modes in the Fabry-Perot micro-cavities is needed. This effect is described as a recycling of radiative modes in the waveguide. To support the modelling, preliminary experimental results of micro-cavities in Si3_3N4_4 waveguides realized with Focused Ion Beam technique are reported.Comment: 5 pages, 5 figure

    Radiation induced force between two planar waveguides

    Get PDF
    We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light propagating through them. We have calculated the dependence of the force on the slab separation by means of the Maxwell--Stress tensor formalism and we have discussed its main features for the different propagation modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively estimated the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure

    Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture

    Full text link
    We compare the experimental stability diagram of a Fermi-Bose mixture of K-40 and Rb-87 atoms with attractive interaction to the predictions of a mean-field theoretical model. We discuss how this comparison can be used to give a better estimate of the interspecies scattering length, which is currently known from collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure

    Fermi-Bose quantum degenerate ^40 K - ^87 Rb mixture with attractive interaction

    Full text link
    We report on the achievement of simultaneous quantum degeneracy in a mixed gas of fermionic ^40 K and bosonic ^87 Rb. Potassium is cooled to 0.3 times the Fermi temperature by means of an efficient thermalization with evaporatively cooled rubidium. Direct measurement of the collisional cross-section confirms a large interspecies attraction. This interaction is shown to affect the expansion of the Bose-Einstein condensate released form the magnetic trap, where it is immersed in the Fermi sea.Comment: 5 pages, 4 figures, replaced one figure plus some change

    Evidence of balance training‐induced improvement in soccer‐specific skills in U11 soccer players

    Get PDF
    The present study aim was to determine the role of balance training in improving technical soccer skills in young players. Two U11 soccer teams were randomly assigned one to either balance training (BT; n=22) or control group (Ctrl; n=21). At the end of their habitual soccer training (identical in BT and Ctrl), BT underwent additional balance training for 12 weeks (3sessions/week, 20 min per session), while Ctrl had a 20\u2010min scrimmage. Before and after the intervention, BT and Ctrl underwent two soccer\u2010specific tests (Loughborough Soccer Passing, LSPT, and Shooting, LSST, Tests), and bipedal and unipedal balance evaluations. After intervention, both groups decreased the trials time and improved passing accuracy, with larger improvements in BT than Ctrl [LSPT penalty time (CI95%): \u20102.20 s (\u20102.72/\u20101.68); ES (CI95%): \u20102.54 s (\u20103.34/\u20101.74)]. Both groups improved balance ability, with BT showing larger increments in bipedal tests than Ctrl [static balance: \u201029 mm (\u201042/\u201016); ES: \u20101.39 (\u20102.05/\u20100.72); limit of stability: 4% (3/5); ES 3.93 (2.90/4.95); unipedal quasi\u2010dynamic balance: 0.07 a.u. (0.03/0.11); ES: 1.04 (0.40/1.67) and active range of motion: \u20105% (\u20108/\u20102); ES \u20100.89 (\u20101.51/\u20100.26)]. Low\u2010to\u2010moderate correlations between the players\u2019 technical level and unipedal balance ability were retrieved, particularly in the non\u2010dominant limb (R from 0.30 to 0.48). Balance training improved some technical soccer skills more than habitual soccer training alone, suggesting that young soccer players may benefit from additional balance training added to their traditional training

    Topology of the ground state of two interacting Bose-Einstein condensates

    Full text link
    We investigate the spatial patterns of the ground state of two interacting Bose-Einstein condensates. We consider the general case of two different atomic species (with different mass and in different hyperfine states) trapped in a magnetic potential whose eigenaxes can be tilted with respect to the vertical direction, giving rise to a non trivial gravitational sag. Despite the complicated geometry, we show that within the Thomas-Fermi approximations and upon appropriate coordinate transformations, the equations for the density distributions can be put in a very simple form. Starting from this expressions we give explicit rules to classify the different spatial topologies which can be produced, and we discuss how the behavior of the system is influenced by the inter-atomic scattering length. We also compare explicit examples with the full numeric Gross-Pitaevskii calculation.Comment: RevTex4, 8 pages, 7 figure

    Optical Limiter Based on PT-Symmetry Breaking of Reflectionless Modes

    Full text link
    The application of parity-time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as a novel approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation is a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The optical limiting is demonstrated by measurements of single 532-nm 6-ns laser pulses. At fluences below 10 mJ/cm2, the multilayer exhibits a flat-top passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity.Comment: 17 pages, 5 figure
    • …
    corecore